Exam SOLID MECHANICS (NASM) January 19, 2015 (09–12:00)

Question 1 For each of the following statements point out if it is correct or not, and why:

a. *Every* continuum solution for stress ($\boldsymbol{\sigma}$), strain ($\boldsymbol{\varepsilon}$) and displacement (\boldsymbol{u}) has to satisfy the equations:

div
$$\boldsymbol{\sigma} = \boldsymbol{0}$$
, (1a)

$$\boldsymbol{\varepsilon} = \frac{1}{2} [\operatorname{grad} \boldsymbol{u} + (\operatorname{grad} \boldsymbol{u})^T], \qquad (1b)$$

$$\boldsymbol{\sigma} = \boldsymbol{\mathscr{L}}\boldsymbol{\varepsilon}. \tag{1c}$$

- b. The hydrostatic pressure in an isotropic linear elastic material with a Poisson ratio of v = 1/2 is always zero.
- c. Slip (or glide) in cubic crystals occurs preferentially on planes at 45° from the principal stress direction.

Question 2 In a crystal subjected to uniaxial tension, as indicated in the figure by the vertical arrows, a slip system is identified by the angle ϕ between slip plane normal and tensile direction, and by the angle λ between slip direction and tensile axis.

- a. Derive the relation between the applied stress σ and the shear stress resolved on this slip system, τ_r .
- b. Derive the analogous relationship when the crystal is subjected to a shear stress τ.

Question 3 One of the classical solutions for tribology is that of Flamant's problem: a halfinfinite body in plane strain (normal to the plane of the sketch below) loaded by a point force normal to the free surface. The central question is: what is the stress field? We will consider this in terms of a polar coordinate system (r, θ) .

- a. Write down all traction boundary conditions along the free surface.
- b. Use symmetry to demonstrate that $\sigma_{r\theta}(r, \theta) = 0$.
- c. The radial stress field (σ_{rr}) must be such that it is singular at the point force (r = 0) and vanishes at $r \to \infty$. A dependence of the type $\sigma_{rr} \propto 1/r$, independent of θ^1 , satisfies these boundary conditions. Assuming this, express the radial stress field in terms of the point force *P* (per unit thickness normal to the plane of consideration). (NB: This can be done solely by considering equilibrium).
- d. Determine $\sigma_{\theta\theta}(r,\theta)$ through consideration of the Airy stress function.

¹This is incorrect!

Question 4 A cantilever of length l + a and bending stiffness EI is simply supported at a distance l and subjected to a load F at the free end.

- a. Consider the free-body diagram of the beam only; that is, completely isolated from the environment. Can all the reaction forces and moments from the wall and the support be determined solely by equilibrium? Explain.
- b. Specify the boundary conditions.
- c. Use the forget-me-nots to determine the tip displacement W and the rotation θ at the support.

<i>₫</i> —		
Question	# points	
1	1+1+1=3	
2	2+1=3	
3	1+1+2=4	
4	1+1+3=5	

Exam grade = (# points + 2)/1.7

Question 1

a. **In**correct: (1c)

b. Incorrect

c. Incorrect

Question 2

a. Introduce unit vector in (vertical) tensile direction, *n*. Then stress tensor is $\boldsymbol{\sigma} = \boldsymbol{\sigma} \boldsymbol{n} \otimes \boldsymbol{n}$ and

$$\tau_R = \boldsymbol{m} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{s}$$

= $\boldsymbol{\sigma}(\boldsymbol{m} \cdot \boldsymbol{n})(\boldsymbol{s} \cdot \boldsymbol{n})$
= $\boldsymbol{\sigma} \cos \phi \cos \lambda$

b. Shear stress is rather poorly defined as the direction of shear, *t*, is lacking. Let us assume that it is in the plane span by *n* and *s* and orthogonal to *n*. Then $\sigma = \tau(n \otimes t + t \otimes n)$ and

$$\begin{aligned} \tau_R &= \boldsymbol{m} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{s} \\ &= \tau[(\boldsymbol{m} \cdot \boldsymbol{n})(\boldsymbol{t} \cdot \boldsymbol{s}) + (\boldsymbol{m} \cdot \boldsymbol{t})(\boldsymbol{n} \cdot \boldsymbol{s})] \\ &= \tau[\cos \phi \cos \phi - \sin \phi \cos \lambda]. \end{aligned}$$

If, alternatively, the shear stress is applied in the plane span by *m* and *s*, yet still orthogonal to *n*, then

$$\tau_R = \boldsymbol{m} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{s}$$

= $\tau[(\boldsymbol{m} \cdot \boldsymbol{n})(\boldsymbol{t} \cdot \boldsymbol{s}) + (\boldsymbol{m} \cdot \boldsymbol{t})(\boldsymbol{n} \cdot \boldsymbol{s})]$
= $\tau[\cos\phi\sin\lambda - \sin\phi\cos\lambda].$

Students may have a different sign of τ because they have assumed a 90° degree rotation of the applied shear stress.

Answers to (a) and (b) can be simplified by noting that since $\phi + \lambda = \pi/2$, $\cos \lambda = \sin \phi$ and $\sin \lambda = \cos \phi$.

Question 3

a. t = 0, or $\sigma_{r\theta} = \sigma_{\theta\theta} = 0 \forall r$ except at r = 0

b. The problem is symmetric about the vertical *z*-axis.

c. Consider the free-body diagram of a semi-circular region of radius *r*:

1

Vertical force equilibrium:

$$P + \int_{-\pi/2}^{\pi/2} \sigma_{rr} \cos \theta r d\theta = 0$$

Substituting $\sigma_{rr} = C/r$, ² we find C = -P/2, hence

$$\sigma_{rr} = -\frac{1}{2}\frac{P}{r}$$

2

1

1

Question 4

a. There are 3 (hidden) unknowns: the reaction forces from the support and the left-hand wall, V and D, plus the bending moment exerted by the wall, M_0 . However, there are only two relevant equilibrium conditions: equilibrium in the vertical direction and equilibrium of moments, hence not all unknowns can be determined solely from equilibrium.

b. w(0) = w(l) = 0, w'(0) = 0.

c. Use superposition of the solution for a cantilever:

²which is incorrect and should read $\sigma_{rr} = C \cos \theta / r$

By clamping the beam, two of the three BCs of (b) are met, and V is the only unknown force. It is to be determined from the remaining BC that w(l) = 0:

$$w(l) = \frac{F}{EI} \left(\frac{1}{2} L l^2 - \frac{1}{6} l^3 \right) - \frac{V l^3}{3EI},$$

with L = l + a. The condition that w(l) = 0 gives

$$V = F\left(1 + \frac{3}{2}\frac{a}{l}\right).$$

The tip deflection (downwards) due to V is given by

$$-\frac{Vl^3}{3EI}+\theta_V(l)a$$

with $\theta_V(l) = w'_V(l) = -(Vl^2)/(2EI)$. Hence the total tip deflection becomes

$$w(L) = \frac{FL^3}{3EI} - \frac{Vl^3}{3EI} - \frac{Vl^2a}{2EI}$$
$$= \frac{Fa^3}{3EI} \left\{ 1 + \frac{3}{4}\frac{l}{a} \right\}$$

.

The rotation at *l* due to *F* is to be found from w'(x) for an end-loaded cantilever:

$$w'_F(x) = \frac{F}{EI} \left(Lx - \frac{1}{2}x^2 \right)$$

so in total

$$w'(l) = \frac{F}{EI} \left(Ll - \frac{1}{2}l^2 \right) - \frac{Vl^2}{2EI}$$
$$= \frac{5Fal}{4EI}$$

L	\mathbf{a}
L	-
L	•